پیش بینی میان مدت و کوتاه مدت بار با بکارگیری شبکه های عصبی راف و الگوریتم بهینه سازی جهش ملخ
|
محمد فردوسیان ، حمدی عبدی* ، شهرام کریمی ، سعید خراطی  |
|
|
چکیده: (2281 مشاهده) |
با افزایش جمعیت و رشد جوامع صنعتی تغییرات بار مصرفی در شبکه های قدرت غیر قابل اجتناب بوده و لازم است میزان بار مورد نیاز شبکه، پیش بینی شود. پیش بینی بار ساعتی به صورت میان مدت می تواند معیار مناسبی برای برآورد بار و انرژی باشد. همچنین این پیشبینی الگوی خوبی برای پیش بینی کوتاه مدت بار خواهد بود. در این مقاله روش جدیدی برای پیش بینی ساعتی بار به صورت میان مدت و کوتاه مدت با استفاده از شبکه های عصبی راف و الگوریتم جهش ملخ ارائه می گردد. در این مقاله یک شبکه عصبی راف بهبود یافته ارائه شده است. شبکه های عصبی راف نوعی از ساختارهای عصبی هستند که براساس نرون های راف طراحی می شوند. یک نرون راف را می توان به صورت زوجی از نرون ها در نظر گرفت که به نرون های کران بالا و کران پایین مرسوم هستند. همانند شبکه های پرسپترون چند لایه شبکه عصبی راف نیز می تواند با استفاده از الگوریتم پس انتشار خطا مبتنی بر گرادیان نزولی آموزش داده شود. با این حال این الگوریتم دارای مشکلاتی مانند در دام افتادن در کمینه های محلی است که در این مقاله به کمک الگوریتم جهش ملخ، بر این کاستی غلبه می شود. برای شبیه سازی روش پیشنهادی در پیش بینی بار روزانه، شبکه سراسری برق دبی به منظور اعمال شبکه های عصبی راف و ترکیب آن با الگوریتم جهش ملخ ارائه می گردد که نتایج نشانگر موفقیت آمیز بودن روش های پیشنهادی می باشد.
|
|
واژههای کلیدی: پیش بینی بار، شبکه های عصبی راف، الگوریتم جهش ملخ، الگوریتم ژنتیک |
|
متن کامل [PDF 1146 kb]
(661 دریافت)
|
نوع مطالعه: پژوهشي |
موضوع مقاله:
مهندسی برق دریافت: 1399/1/9 | پذیرش: 1399/7/15 | انتشار: 1400/4/9
|
|
|
|
|
ارسال نظر درباره این مقاله |
|
|